Enhancing Long-Range Surveillance with SWIR Sensors: The Next Frontier in Security

Enhancing Long-Range Surveillance with SWIR Sensors: The Next Frontier in Security

In the modern world of security and surveillance, staying ahead of potential threats is paramount. The challenges posed by long-range surveillance demand cutting-edge technology to vigilantly oversee vast expanses and remote regions. Enter Short-Wave Infrared (SWIR) sensors, a game-changing innovation that has recently emerged, reshaping the landscape of security. So, this article delves into the exceptional capabilities of SWIR sensors and their versatile role in enhancing security measures.

Advantages of SWIR sensors

See beyond visible with SWIR Sensors

SWIR sensors detect light in the short-wave infrared spectrum, ranging from 900 to 1700 nanometers. Unlike traditional cameras, SWIR sensors can capture images even in low-light conditions or through atmospheric obscurants like fog, dust, and smoke. This inherent ability makes SWIR sensors ideal for long-range surveillance, ensuring that security personnel have a clear vision, regardless of environmental obstacles.

Extending Range and Detection

Among the noteworthy advantages of SWIR sensors is their ability to dramatically extend the range of surveillance. Traditional visible light and thermal infrared cameras have limitations in identifying targets at extended distances. In contrast, SWIR sensors excel in detecting objects beyond the capabilities of these conventional alternatives, making them highly effective for tasks such as border security, coastal monitoring, and safeguarding large-scale infrastructure.

Enhanced Target Discrimination

SWIR sensors excel in target discrimination, allowing security personnel to differentiate between objects with similar thermal signatures. This advanced feature significantly reduces false alarms, enabling accurate identification of potential threats. This translates to efficient utilization of resources and time, focusing efforts on genuine security concerns.

Covert Operations Made Possible

For situations that demand discretion, SWIR sensors offer a distinct advantage. Their capacity to operate effectively with low-level illumination facilitates covert operations without alerting potential intruders. This makes SWIR sensors an invaluable asset for military and law enforcement agencies, preserving the element of surprise during critical operations.

Integration and Cost-Effectiveness

With technological advancements, SWIR sensors are now more accessible and can be integrated with existing surveillance systems. This streamlined integration optimizes overall security infrastructure while providing an economical solution for long-range surveillance needs.

In conclusion, as long-range surveillance requirements continue to evolve, SWIR sensors have emerged as a revolutionary tool for security professionals. With their ability to extend range, penetrate obscurants, and offer enhanced target discrimination, SWIR sensors are transforming the landscape of security operations. Spanning from safeguarding borders and critical infrastructure to enabling covert operations, SWIR sensors unequivocally establish themselves as the game-changer in the world of surveillance, heralding a future that’s both safer and more secure for all.

NIT’s Expertise in InGaAs-based SWIR sensors for Long-Range Surveillance

NIT, a pioneering French company established in 2007, is at the forefront of delivering advanced imaging solutions centered around short-wave infrared (SWIR) sensors and cameras. Notably, NIT’s SWIR sensors, InGaAs-based sensors, offer unparalleled benefits for long-range surveillance.

Firstly, ranging from VGA to HD resolutions, our sensors ensure exceptional clarity and detail. Secondly, boasting an impressive 120dB High Dynamic Range, NIT’s SWIR sensors eliminate saturation concerns, guaranteeing superior image fidelity.

Furthermore, NIT’s SWIR sensors excel in gated performance, enhancing their effectiveness in challenging surveillance environments.

In addition, another advantage is that our products are ITAR-free, showcasing our commitment to accessible and globally adaptable solutions.

Unleash Long-Range Surveillance Potential

Discover the potential of NIT’s SWIR sensors to elevate your security operations. Reach out to an NIT representative today and explore how our technology can revolutionize your security measures.

WiDy SenS SDI
Where SWIR Sensors Factor into Additive Manufacturing

Where SWIR Sensors Factor into Additive Manufacturing

Short-wave infrared (SWIR) sensors are becoming significantly important in various industries, especially additive manufacturing. These sensors provide unique capabilities that enable processes such as defect detection, real-time monitoring, and control over specific properties. In this blog post, we discuss how SWIR sensors are used in additive manufacturing and the benefits they provide.

What are SWIR Imaging Sensors?

SWIR sensors operate in the short-wave infrared spectrum, a wavelength range between the visible light and the long-wave infrared. These sensors utilize materials like Indium Gallium Arsenide (InGaAs) to capture and detect SWIR wavelengths, which is necessary to visualize objects or processes that may be invisible to the naked eye. With their ability to detect radiation in this range, SWIR sensors offer distinct advantages in imaging applications, including additive manufacturing.

Read our blog post for a more in-depth explanation of how SWIR cameras work.

Understanding Additive Manufacturing

Additive manufacturing, also called 3D printing or abbreviated to AM, is a process that builds objects layer by layer using computer-controlled systems. Typically, additive manufacturing involves three key stages:

  • Design
  • Preparation
  • Printing

There are numerous advantages to AM, including improved accuracy, lower costs, rapid prototyping, and reduced material waste. However, it also has its challenges, including material limitations and post-processing requirements. In recent years, additive manufacturing has seen emerging trends and advancements, such as improved materials and enhanced complexity of printed objects. But the introduction of SWIR sensors has had a significant impact.

The Role of SWIR Imaging Sensors in Additive Manufacturing

SWIR sensors have found valuable applications in additive manufacturing. They enable defect detection by identifying thermal anomalies invisible to the naked eye or other imaging technologies. Additionally, SWIR imaging aids in boundary detection, ensuring precise printing location and adherence to specifications.

Other crucial applications include the following:

  • Environmental Monitoring: Monitoring air quality, humidity, and particulate matter.
  • Quality Control: Inspecting the quality of printed products.
  • Real-time Monitoring: Offering vital information about product properties.
  • Temperature Control: The environment’s temperature is important, and close monitoring is essential for optimizing printing conditions.

New Imaging Technologies offer State-of-the-Art SWIR Sensors

New Imaging Technologies have invested heavily over the years in all aspects of SWIR technology. This includes camera electronics, photodiode arrays, and software. With in-house manufacturing technologies, we are an integrated source for SWIR sensors and cameras and offer a unique product portfolio for those in additive manufacturing and other industries.

SWIR sensors are used for inspecting parts and monitoring processes, both of which have been difficult to visualize in the past. However, with SWIR cameras that can accurately capture processes such as laser deposition and selective laser melting, operators can clearly monitor fabrication processes. As a result, additive manufacturing methods can be optimized, and overall productivity can be increased.

NIT has developed a range of WiDy SenS cameras fitted with InGaAs sensors, offering unique features suitable for a range of applications. These offer high dynamic range and sensitivity, a comfortable field of view, and a pure-linear mode ideal for monitoring additive manufacturing processes.

SWIR imaging solutions for Additive Manufacturing

To learn more about SWIR sensors and their role in additive manufacturing, contact a member of NIT today.

WiDy SenS 640 front side view
Visualizing Welding Processes with Short Wave Infrared Cameras

Visualizing Welding Processes with Short Wave Infrared Cameras

Welding plays a vital role in various manufacturing industries as it enables the assembly of metal parts with precision and strength. More importantly, visualizing the welding processes has proven crucial in enhancing the quality and efficiency of welding operations. In this blog post, we will explore the benefits of clearly monitoring welding processes and explain how Short Wave Infrared (SWIR) cameras are invaluable.

Importance of Welding in Manufacturing Industries

Welding has been a key technology in the manufacturing sector, enabling the fabrication of diverse metal components. As industries continuously strive for improved quality and productivity, welding processes have become more sophisticated and automated. To ensure assembly consistency, reproducibility, and quality, it is essential to visualize and monitor the weld pool, especially considering the challenging conditions posed by high temperatures, intense light, and significant contrasts.

What are Short Wave Infrared Cameras?

Short Wave Infrared (SWIR) cameras operate in the wavelength range of 0.9 to 1.7 microns, which is beyond the scope of human vision. These cameras offer superior imaging capabilities compared to visible light cameras under specific conditions. One advantage is their high dynamic range, allowing them to capture both the welding arc and the bevels in a single image without the need for filters. SWIR cameras provide high-contrast, clear images of the welding arc, melting bath, and surrounding material, enabling enhanced visualization of welding processes.

For a more in-depth explanation of SWIR cameras, read our previous blog post: How Do SWIR Cameras Work?

The Use of SWIR Cameras in Welding

SWIR cameras provide high-quality imaging of the welding arc, melting bath, and surrounding material, facilitating process control and quality assurance. With their compatibility across various welding processes and applications in additive manufacturing and thermal imaging, SWIR cameras have become indispensable in the welding and manufacturing industries. As technology continues to advance, these cameras hold immense potential for further innovations in the field of welding visualization.

Some of the benefits of SWIR cameras include being able to image through fumes and smoke in challenging environments, which is difficult or impossible with other techniques. They are also compatible with various glass optical filters that can withstand harsh welding conditions and produce high-resolution images ideal for monitoring high-precision processes.

Visualizing Welding Processes with New Imaging Technologies

New Imaging Technologies (NIT) is a renowned company that designs and manufactures image products based on patented high-dynamic range response sensors. The SWIR cameras we offer deliver exceptional image quality, ensuring the precise monitoring of welding operations.

For visualizing welding processes, we recommend the WiDy SenS 640 SWIR camera. It is a unique dual-response InGaAs sensor with high sensitivity and an HDR camera designed to provide a VGA resolution of 640x512px for a wide field of view. The WiDy SenS is commonly used as a beam diagnostic tool in additive manufacturing processes such as welding.

SWIR imaging solutions

Contact NIT today for more information about our SWIR imaging solutions and Welding application.

NIT SWIR cameras
Why SWIR is Beneficial for Laser Applications

Why SWIR is Beneficial for Laser Applications

In the world of laser technology, the use of Shortwave Infrared (SWIR) has proven to be immensely beneficial. SWIR refers to the portion of the electromagnetic spectrum that spans from 900nm to 1700nm. It lies between the visible and long-wave infrared regions, showcasing distinctive properties that set it apart from other types of light. Unlike visible light, SWIR is invisible to the human eye, but it can be detected by specialized cameras and sensors. This technology offers a range of unique characteristics that have revolutionized laser applications and opened up new possibilities in various industries. In this blog post, we will explore the advantages of SWIR for laser applications.

Advantages of SWIR for Laser Applications

In comparison to other types of light used in laser applications, SWIR holds several distinct advantages. These advantages contribute to improved accuracy, precision, and efficiency in laser systems, especially in outdoor applications where visibility may be limited.

Complementary Capabilities of Thermal Cameras

When used together with thermal cameras, SWIR cameras provide complementary capabilities. They excel in low-light conditions while offering the ability to capture images during daylight as well. This versatility ensures consistent imaging performance across different lighting scenarios.

High-Resolution Imaging

SWIR cameras deliver high-resolution imaging, capturing tiny details with outstanding clarity. This attribute is valuable in scientific and industrial applications, where precise analysis and visualization are paramount. NIT’s state-of-the-art SWIR cameras offer excellent imaging, with some up to 2k resolution.

High Sensitivity to Invisible Light

SWIR cameras possess high sensitivity to invisible light, enabling the detection and analysis of light wavelengths beyond the visible spectrum. This feature makes SWIR cameras invaluable in applications such as military imaging and semiconductor inspection.

Illumination-Free Operation

One of the primary benefits of SWIR cameras is their ability to operate without the need for additional illumination. This simplifies the setup and ensures efficient imaging in various conditions, enabling SWIR cameras to be used in cost-effective and practical laser applications.

Unmatched Visibility Through Obstacles

SWIR cameras offer unparalleled visibility through obstacles like fog, smoke, and materials such as glass. This unique characteristic allows for high-quality imaging in challenging conditions, making SWIR ideal for applications that demand reliable and clear visualization.

New Imaging Technologies and SWIR Products

Shortwave Infrared (SWIR) has emerged as a powerful ally for laser applications, revolutionizing the way lasers are used across various industries. With its ability to penetrate obstacles, capture images through glass, differentiate objects, provide depth of penetration, identify beacons and lasers, and accurately assess power distribution, SWIR offers significant advantages over other types of light. Its utilization enhances the accuracy, precision, and efficiency of laser systems, paving the way for advancements in laser material processing, spectroscopy, and other fields. 

Within the realm of SWIR cameras, New Imaging Technologies (NIT) is a prominent player that offers cutting-edge solutions for laser applications. Our SWIR cameras are manufactured with state-of-the-art InGaAs material in-house to offer innovative and cost-effective solutions in laser applications and more.

We provide cameras for industry professionals who are looking to unlock the full potential of SWIR in laser applications.

Introducing SenS 1280: HD SWIR Camera – Smart Version

Introducing SenS 1280: HD SWIR Camera – Smart Version

SenS 1280 – Smart version

Introducing the SenS 1280 HD SWIR camera – Smart version, developed and produced in France. This camera delivers crisp, low-noise images with its impressive features: HD resolution, automatic gain control, and advanced image processing capabilities.

Key features

With a high-definition resolution of 1280×1024 pixels and a 10-micron pixel pitch, the SenS 1280 camera ensures exceptional image quality. It offers high sensitivity with a read-out noise of only 30e-, providing remarkable clarity and accuracy for capturing fine details – the best performance in the market(4 times more sensitive than a 5-micron pixel pitch).

Equipped with advanced onboard image processing, the SenS 1280 HD SWIR camera-Smart version guarantees unparalleled performance. Here’s what it offers:

  • Automatic Gain Control (AGC): Ensures optimal brightness and contrast levels, enabling precise detail capture even in challenging lighting conditions. This eliminates the need for manual adjustments and simplifies the imaging process.
  • Automatic Integration Time (AIT): The camera can automatically adjust the exposure time to match a target brightness eliminating the need for manual adjustments.
  • On-board Non-Uniformity Correction (NUC) and Bad Pixel Replacement (BPR):  Enhance image quality by correcting irregularities and replacing defective pixels.
  • Quantum Efficiency (QE) of over 80%: Maximizes sensitivity to shortwave infrared light, facilitating accurate detection and analysis.
  • Frame rate 60Hz full frame: Ensures smooth, real-time imaging, capturing objects with precision and accuracy.
  • Region of Interest (ROI): Improve overall imaging efficiency by allowing users to focus on specific areas of interest.
  • GenICam compliant

The embedded version of the SenS 1280 camera supports both CameraLink and SDI interfaces, providing flexibility and compatibility with a wide range of systems.

As a result, this camera is ideally suited for machine vision and surveillance applications.

The camera will be presented at Laser World of Photonics 2023

Join us at the #A2.228/6 Laser World of Photonics to witness its outstanding performance firsthand.

NIT at Laser World of Photonics 2023

To experience the remarkable performance of the SenS 1280 HD SWIR camera visit us at booth #A2.228/6 during the upcoming Laser World of Photonics event (27.–30. June 2023, Munich, Germany).

Our experts will be available to provide demonstrations and answer any questions you may have.

Using SWIR Imaging Devices in Semiconductor Inspection

Using SWIR Imaging Devices in Semiconductor Inspection

The semiconductor industry supports a vast amount of applications worldwide. Therefore, it should be no surprise that semiconductor inspection is highly important and must be optimized to ensure the quality and reliability of integrated circuits used in various electronic devices. Although there are several methods available for semiconductor inspection, SWIR (Short-Wave Infrared) imaging devices have emerged as powerful tools for this application. In this blog post, we will explore the applications, benefits, and key features of SWIR imaging devices in semiconductor inspection.

Understanding SWIR Imaging Devices

SWIR imaging provides enhanced sensitivity and image quality, enabling the detection of subtle defects that might go unnoticed with other technologies. Additionally, SWIR cameras offer non-destructive testing capabilities, allowing for thorough inspection without causing any damage to the semiconductor materials. Real-time monitoring and inspection automation are facilitated by SWIR cameras, improving efficiency and reducing the need for manual intervention. Furthermore, SWIR imaging devices are known for their cost-effectiveness, making them an attractive option for semiconductor manufacturers.

Learn more about how SWIR cameras work.

Applications of SWIR Imaging in Semiconductor Inspection

In the semiconductor industry, SWIR cameras are typically used to inspect ingots (silicon columns), thin wafers, and other semiconductor components, and they are also used for specific processing steps and failure analysis. Below, we look at these applications in more detail.

Bonding and Wire Detection

SWIR cameras can be used to inspect bonding and wire connections within integrated circuits. When these components are visualized, they enable users to identify problems such as detachment or misalignment and damaged wires. 

Defect Detection and Classification

SWIR cameras are an outstanding choice of equipment for detecting and classifying defects such as cracks, particles, and micro-cracks in semiconductor components. They can penetrate silicon and other semiconductor materials, allowing for comprehensive inspection.

Wafer Inspection and Metrology

SWIR imaging devices enable accurate inspection and metrology of semiconductor wafers. They can be used to evaluate wafer alignment marks, critical dimensions, and overlay measurements, contributing to quality control in the manufacturing process.

Yield Improvement and Process Optimization

SWIR imaging devices are vital in improving yield and optimizing semiconductor manufacturing processes. They aid in identifying and rectifying process-related issues, reducing waste, and enhancing overall productivity.

SWIR imaging devices are regarded as invaluable tools in semiconductor inspection. Their ability to see through silicon and other semiconductor materials and enhanced sensitivity enable comprehensive defect detection and quality control. By utilizing SWIR imaging devices, semiconductor manufacturers can improve yields, optimize processes, and enhance overall productivity. Further innovations will likely enhance SWIR imaging for semiconductor inspection as technology advances.

New Imaging Technologies Offer SWIR Imaging Devices

New Imaging Technologies (NIT) has established itself as a leading provider of SWIR sensors and cameras, offering a range of solutions for semiconductor inspection. Notably, NIT’s SWIR imaging devices offer a compelling performance-to-price ratio, making them highly suitable for integration into semiconductor production lines. With our advanced InGaAs material, proprietary manufacturing platforms, and expertise in ROIC, camera engineering, and CMOS design, NIT continues to provide SWIR solutions that combine exceptional performance and cost-effectiveness.

As the semiconductor industry evolves, NIT remains at the forefront of SWIR imaging technology, poised to contribute to further advancements in semiconductor inspection and quality control. With their commitment to innovation and customer satisfaction, NIT’s SWIR imaging devices are set to play an essential role in ensuring the reliability and efficiency of semiconductor manufacturing processes.

SWIR imaging solutions

To learn more about the SWIR imaging products we offer, contact a member of New Imaging Technologies today.

NIT SWIR cameras